
R

E
a

B
D
L

a

A
R
R
A
A

K
E
D
D
D

C

0
d

Journal of Pharmaceutical and Biomedical Analysis 56 (2011) 141– 158

Contents lists available at ScienceDirect

Journal  of  Pharmaceutical  and  Biomedical  Analysis

jou rn al h om epage: www.elsev ier .com/ locate / jpba

eview

xperimental  designs  and  their  recent  advances  in  set-up,  data  interpretation,
nd  analytical  applications

ieke  Dejaegher, Yvan  Vander  Heyden ∗

epartment of Analytical Chemistry and Pharmaceutical Technology (FABI), Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB),
aarbeeklaan 103, 1090 Brussels, Belgium

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 27 October 2010
eceived in revised form 22 April 2011
ccepted 25 April 2011

a  b  s  t  r  a  c  t

In  this  review,  the  set-up  and  data  interpretation  of  experimental  designs  (screening,  response  surface,
and  mixture  designs)  are  discussed.  Advanced  set-ups  considered  are  the  application  of  D-optimal  and
supersaturated  designs  as screening  designs.  Advanced  data  interpretation  approaches  discussed  are an
adaptation  of the  algorithm  of  Dong  and  the  estimation  of  factor  effects  from  supersaturated  design
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results.  Finally,  some  analytical  applications  in  separation  science,  on  the  one  hand,  and  formulation-,
product-,  or  process  optimization,  on  the  other,  are  discussed.
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. Introduction

Optimization strategies are procedures followed when attempt-
ng to optimize, for instance, a formulation, product, process, or an
nalytical method, e.g. a chromatographic method to separate com-
onents in a given matrix. In an optimization, one tries to find the
ptimal settings or conditions for a number of factors. Factors are
arameters than can be set and reset at given levels, e.g. tempera-
ure, pH, reagens concentration, reaction time, etc., and that affect
he responses or the outcome of a method or procedure. The factors
nd their level ranges form the experimental domain within which
ne tries to find the global optimum, i.e. the overall best conditions.
actors also might ‘interact’, for instance, a two-factor interaction
ccurs when the influence of one factor on the response is different
t different levels of the second factor.

In case only one factor needs to be optimized, a simple univari-
te procedure is performed. However, usually two or more factors
re studied. This can be done using either univariate or multi-
ariate optimization strategies [1,2]. The different strategies are
epresented in Fig. 1.

A classically applied univariate procedure is the one-variable-
t-a-time (OVAT) approach, where only one factor at a time is

aried and optimized. The OVAT procedure, however, has some
isadvantages, i.e. interactions between factors are not taken into
ccount, many experiments are needed when the number of factors

Univariate procedures 

Optimization of one factor 

One-variable-at-a-time 
(OVAT) approach 

Opti

Seq
app

S
app

Selection of impo

One-variable-at-a-time 
(OVAT) approach 

Univariate procedures

Fig. 1. Optimizatio
ical and Biomedical Analysis 56 (2011) 141– 158

increases, only a small part of the experimental domain is exam-
ined, the global optimum might not be found, and the found optimal
conditions might depend on the starting conditions [1,2].

On the other hand, a multivariate approach varies several fac-
tors simultaneously. Multivariate approaches are subdivided into
sequential and simultaneous ones [1,2]. Sequential procedures con-
duct a few initial experiments and use their results to define the
following experiment(s) [3].  Sequential approaches can be applied
when the experimental domain containing the optimum is a priori
unknown, but are limited to the optimization of only one response.
Simultaneous procedures perform a predefined number of exper-
iments, according to a well-defined experimental set-up, e.g. an
experimental design [1,2,4–6].

An experimental design is an experimental set-up to simulta-
neously evaluate several factors at given numbers of levels in a
predefined number of experiments. Roughly, experimental designs
can be divided into screening designs (e.g. full factorial, fractional
factorial, and Plackett–Burman designs), response surface designs
and mixture designs. Screening designs allow screening a relatively
large number of factors in a relatively small number of experiments.
They are used to identify the most influencing factors. Typically,
the factors are evaluated at two levels in these designs. Response

surface designs are used to find the optimal levels of the most
important factors (which occasionally are selected from a screen-
ing design approach). In these designs, factors are examined at least

mization of two or more factors

Multivariate procedures

Response 
surface 
designs 

uential 
roaches

Simultaneous 
approaches 

implex 
roaches

Experimental 
design 

approaches 

Mixture 
designs

rtant factors

Multivariate screening designs

n strategies.
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two levels in N = 2f−� experiments, with 1/2� representing the frac-
tion of the full factorial (� = 1, 2, 3, . . .)  (Table 2) [4–6,9].  For FF
designs, N is a power of two (N = 8, 16, 32, . . .). Because only a frac-
tion of a full factorial design is performed, some information is lost.

Table 1
(a) 23 two-level full factorial design for 3 factors, and (b) the columns of contrast
coefficients for the interactions.

(a)

Experiment Factors

A B C

1 −1 −1 −1
2  1 −1 −1
3  −1 1 −1
4  1 1 −1
5  −1 −1 1
6  1 −1 1
7  −1 1 1
8  1 1 1

(b)

Experiment Contrast coefficients

AB AC BC ABC

1 1 1 1 −1
2  −1 −1 1 1
3  −1 1 −1 1
4  1 −1 −1 −1
B. Dejaegher, Y. Vander Heyden / Journal of Pharm

t three levels. The optimal conditions are usually derived from
esponse surfaces build with the design results. Mixture designs
re response surface designs used when all factors examined are
ixture-related, i.e. factors representing the fraction of a given

omponent in a mixture. Examples of such factors are the organic
odifiers in a mobile phase in chromatography, or the excipients

n a tablet or another pharmaceutical formulation. Which designs
nally are applied depends on the number and type of factors to be
xamined, on the purpose of their use, and on the preference of the
nalyst.

Experimental designs are applied in many different fields and
ciences. Within this paper, two application areas from pharmaceu-
ical sciences will be considered, i.e. the optimization of separation

ethods, on the one hand, and the optimization of formulations,
roducts, or processes, on the other.

Our first application area is thus the use of experimental designs
n separation science. To develop an analytical assay to separate
nd quantify components in a given matrix, different steps are dis-
inguished, i.e. the selection of the technique, the optimization of
he method, and its validation [2,4,5].  The technique selection is

ainly based on the properties of the components to be analyzed
nd on its availability in the development laboratory. As techniques
o separate compounds in various matrices, high-performance liq-
id chromatography (HPLC), capillary electrophoresis (CE), and gas
hromatography (GC) are frequently applied.

The optimization of a method is often split into a screening and an
ptimization phase. During the screening phase, all factors, poten-
ially influencing the responses of interest, are tested in order to
ndicate those with the largest effects. These most important fac-
ors are then further explored in the optimization phase, where
heir best settings, i.e. the best conditions, are determined. In the
bove steps, screening and response surface designs, respectively,
re applied. For the optimization of mixtures of solvents, e.g. the
obile phase composition, mixture designs are used [1,2].
After optimization, the method should be validated, i.e. evaluated

hether it can be applied for its intended purpose(s). One of the
ethod validation items is robustness testing, which evaluates the

ffects of small changes in the factors on the considered responses,
nd which applies screening designs for this purpose [7].

The second application area considered is the optimization
f formulations, products, or processes, i.e. pharmaceutical man-
facturing. Classically, batch processing with off-line testing of
andomly collected samples of intermediate and/or end product(s)
s performed in order to evaluate the quality of the product. Nowa-
ays, industries are encouraged to implement a Process Analytical
echnology (PAT) approach in their production processes, as pro-
osed by a guideline of the Food and Drug Administration (FDA)
8]. By implementing PAT, the focus changes from off-line test-
ng to real-time on-line testing of the intermediate and/or end
roduct(s).

Also here, several experimental design approaches can be
pplied [9].  Screening designs are used to indicate the most impor-
ant of all factors, potentially influencing the formulation, product,
r process. Response surface designs are again applied to find
he optimal factor settings, and mixture designs to optimize, for
nstance, the excipients composition in formulations.

In this review, advances in experimental set-up and their data
nterpretation are described. First, the classic screening, response
urface, and mixture designs are discussed. Advances in exper-
mental set-ups discussed are the use of supersaturated and
-optimal designs as screening designs. Advances in data inter-
retation considered are the adapted algorithm of Dong used to
ndicate significant effects in classic screening designs in cases
hen many significant factors are present, and a newly proposed
ethod for the estimation and statistical evaluation of effects from

 supersaturated design. Finally, some analytical applications are
ical and Biomedical Analysis 56 (2011) 141– 158 143

presented, either in the context of optimizing separation tech-
niques, or of formulations, products, and processes.

2. Experimental set-up

2.1. Screening designs

Screening designs are used to indicate the most important fac-
tors from those potentially influencing the considered responses.
They are applied in the context of optimizing separation tech-
niques during screening and in robustness testing, and in the
context of optimizing formulations, products, or processes. Most
often, two-level screening designs, such as fractional factorial
or Plackett–Burman designs, are used [2,4–7,9–11],  which allow
examining a relatively large number of factors f at L = 2 levels in a
relatively small number of experiments (N ≥ f + 1). When f is small,
two-level full factorial designs might also be applied for screening
purposes [2,4,5].

These designs allow the simultaneous examination of quali-
tative (changing on a discrete scale), quantitative (varying on a
continuous scale), and mixture-related factors. For the latter, all
but one component of a mixture maximally can be examined in
one design.

2.1.1. Two-level full factorial designs
A two-level full factorial design contains all possible combina-

tions between the f factors and their L = 2 levels, leading to N = Lf = 2f

experiments to be performed (Table 1). These designs allow esti-
mating all main (i.e. of the factors) and interaction effects between
the considered factors [4–6,9].  The interaction effects are calculated
from the columns of contrast coefficients (Table 1).

2.1.2. Two-level fractional factorial designs
A two-level fractional factorial 2f−� (FF) design contains a frac-

tion of the full factorial design, and allows examining f factors at
5 1 −1  −1 1
6  −1 1 −1 −1
7 −1  −1 1 −1
8  1 1 1 1



144 B. Dejaegher, Y. Vander Heyden / Journal of Pharmaceutical and Biomedical Analysis 56 (2011) 141– 158

Table 2
24−1 fractional factorial design for 4 factors, and the columns of contrast coeffi-
cients that still can be constructed. A = BCD, B = ACD, C = ABD, D = ABC, I1 = AB + CD,
I2 = AC + BD, I3 = AD + BC.

Experiment Factors Contrast coefficients

A B C D I1 I2 I3

1 −1 −1 −1 −1 1 1 1
2 1  −1 −1 1 −1 −1 1
3  −1 1 −1 1 −1 1 −1
4  1 1 −1 −1 1 −1 −1
5  −1 −1 1 1 1 −1 −1
6  1 −1 1 −1 −1 1 −1
7 −1  1 1 −1 −1 −1 1
8 1 1 1  1 1 1 1

Table 3
Plackett–Burman design for 7 factors.

Experiment Factors

A B C D E F G

1 1 1 1 −1 1 −1 −1
2  −1 1 1 1 −1 1 −1
3  −1 −1 1 1 1 −1 1
4 1 −1  −1 1 1 1 −1
5  −1 1 −1 −1 1 1 1
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Table 4
Reflected Plackett–Burman design to examine 7 factors at three levels.

Experiment Factors

A B C D E F G

1 1 1 1 0 1 0 0
2  0 1 1 1 0 1 0
3 0 0 1 1 1 0  1
4 1 0  0 1 1 1 0
5 0  1 0 0 1 1 1
6  1 0 1 0 0 1 1
7  1 1 0 1 0 0 1
8  0 0 0 0 0 0 0
9 −1  −1 −1 0 −1 0 0

10 0 −1 −1 −1 0 −1 0
11 0  0 −1 −1 −1 0 −1
12  −1 0 0 −1 −1 −1 0
13 0  −1 0 0 −1 −1 −1

T
4

6 1  −1 1 −1 −1 1 1
7  1 1 −1 1 −1 −1 1
8  −1 −1 −1 −1 −1 −1 −1

ot all main and interaction effects can be estimated separately
nymore. Some effects are confounded, meaning that they are esti-
ated together (Table 2). For instance, in a half-fraction factorial

esign, each estimated effect is a confounding of two  effects.

.1.3. Two-level Plackett–Burman designs
A Plackett–Burman (PB) design allows examining maximally

 = N − 1 factors in N experiments, where N is a multiple of four
N = 8, 12, 16, 20, . . .)  (Table 3) [4,5,12]. When f exceeds the num-
er of real factors to be examined, the remaining columns of the PB
esign are defined as dummy  factor columns, for which a change
etween the levels −1 and +1 has no physicochemical meaning.

.1.4. Three-, more- or mixed-level screening designs
When it is expected that the effects between [−1,0] differ from
hose between [0,+1] (non-linear behavior of response as function
f factor levels), it might be interesting to screen the factors at three
evels (−1,0,+1), instead of only at two (−1,+1). This can be done
sing so-called reflected designs [13], which are in fact duplicated

able 5
1212 mixed-level asymmetrical design, constructed according to Addelman [14], to exam

Experiment Factors

A B C D E F 

1 −2 −1 −1 −1 −1 −1 

2  −2 −1 1 1 −1 1 

3  −2 1 −1 1 1 −1 

4  −2 1 1 −1 1 1 

5  −1 −1 −1 −1 −1 1 

6  −1 −1 1 1 −1 −1 

7  −1 1 −1 1 1 1 

8  −1 1 1 −1 1 −1 

9  1 −1 −1 −1 1 −1 

10 1  −1 1 1 1 1 

11  1 1 −1 1 −1 −1 

12  1 1 1 −1 −1 1 

13 2  −1 −1 −1 1 1 

14  2 −1 1 1 1 −1 

15 2  1 −1 1 −1 1 

16 2  1 1 −1 −1 −1 
14  −1 0 −1 0 0 −1 −1
15  −1 −1 0 −1 0 0 −1

two-level designs. The two-level designs are executed once with
the factor levels [−1,0], and once with [0,+1]. The reflected design
examines f factors in 2N − 1 experiments (Table 4).

Besides the reflected designs, some other three-level screen-
ing designs are discussed in the literature [13]. In refs. [6,14–16],
asymmetrical or mixed-level factorial designs (Table 5) were used
to screen different factors at different numbers of levels. In ref. [14],
Addelman described a procedure to construct more- or mixed-level
screening designs.

2.1.5. D-optimal designs as screening designs
Besides using D-optimal designs as response surface designs

(see Section 2.2), they can also be used in the context of screening
[17]. However, their application as screening design in pharmaceu-
tical analysis is not very frequent. Nevertheless, to examine a given
number of factors these designs require less experiments than the
higher discussed screening designs.

To construct a D-optimal design to examine f factors, first the
type of model to be build, which requires minimal Nmin experi-
ments to enable estimating the model coefficients, is defined (see
further, Eq. (1) for a screening design or Eq. (2) for a response surface
design). Secondly, the number of experiments, N, to be performed
is defined (N ≥ Nmin). The experimental domain is represented by

a number of candidate experiments (Ngrid) forming a grid over the
domain. The N experiments of the D-optimal design are selected
as that combination with the maximal determinant for XTX (=D-
optimality), with XT the transpose of the model matrix X.

ine one factor at four levels and 12 factors at two levels in 16 experiments [16].

G H I J K L M

−1 −1 −1 −1 −1 −1 −1
1 1 −1 1 1 1 −1
1 1 1 −1 −1 1 1

−1 −1 1 1 1 −1 1
1 −1 1 1 −1 1 1

−1 1 1 −1 1 −1 1
−1 1 −1 1 −1 −1 −1

1 −1 −1 −1 1 1 −1
1 1 −1 1 1 −1 1

−1 −1 −1 −1 −1 1 1
−1 −1 1 1 1 1 −1

1 1 1 −1 −1 −1 −1
−1 1 1 −1 1 1 −1

1 −1 1 1 −1 −1 −1
1 −1 −1 −1 1 −1 1

−1 1 −1 1 −1 1 1
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Table 6
D-optimal screening design to examine 9 factors in 10 experiments [17].

Experiment Factors

A B C D E F G H I

1 1 −1 1 −1 1 −1 −1 −1 −1
2  1 1 −1 −1 −1 −1 1 −1 −1
3  −1 −1 −1 1 1 1 1 −1 −1
4 1 −1  −1 1 −1 −1 −1 1 −1
5 −1  1 1 −1 −1 1 −1 1 −1
6  −1 1 −1 1 1 −1 −1 −1 1
7  1 −1 −1 −1 −1 1 −1 −1 1
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Table 7
N = 12, f = 11 Plackett–Burman design, and two NSS = 6, fSS = 10 supersaturated
designs, constructed according to Lin [27] using column J of the PB design as branch-
ing column.

Plackett–Burman design (N = 12, f = 11)

Experiment Factors

A B C D E F G H I J K

1 1 1 −1 1 1 1 −1 −1 −1 1 −1
2  −1 1 1 −1 1 1 1 −1 −1 −1 1
3  1 −1 1 1 −1 1 1 1 −1 −1 −1
4  −1 1 −1 1 1 −1 1 1 1 −1 −1
5 −1  −1 1 −1  1 1 −1 1 1 1 −1
6 −1  −1 −1 1 −1 1 1 −1 1 1 1
7  1 −1 −1 −1 1 −1 1 1 −1 1 1
8  1 1 −1 −1 −1 1 −1 1 1 −1 1
9  1 1 1 −1 −1 −1 1 −1 1 1 −1

10 −1  1 1 1 −1 −1 −1 1 −1 1 1
11 1  −1 1 1 1 −1 −1 −1 1 −1 1
12  −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

First  supersaturated design (NSS = 6, fSS = 10)

Experiment Factors

A B C D E F G H I K

2 −1 1 1 −1 1 1 1 −1 −1 1
3  1 −1 1 1 −1 1 1 1 −1 −1
4 −1 1 −1 1 1 −1 1 1 1 −1
8 1 1 −1 −1 −1 1 −1 1 1 1

11 1 −1  1 1 1 −1 −1 −1 1 1
12 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

Second supersaturated design (NSS = 6, fSS = 10)

Experiment Factors

A B C D E F G H I K

1 1 1 −1 1 1 1 −1 −1 −1 −1
5 −1 −1 1 −1 1 1 −1 1 1 −1
6 −1 −1 (1 1 −1 1 1 −1 1 1
7  1 −1 −1 −1 1 −1 1 1 −1 1
8  −1 −1 1 1 −1 −1 1 −1 1
9  −1 −1 −1 −1 1 −1 1 1 1

10 1 1 1 1 1 1 1 1  1

However, different to the use of D-optimal designs as response
urface designs, in the case of screening, usually more than two  or
hree factors are examined, the number of factor levels is restricted
o two or three, and the examined domain is symmetrical. Most
ften, only the coefficients for the main factors are included in the
egression model (Eq. (1)),

 = ˇ0 +
f∑

i=1

ˇixi (1)

here y is the response, ˇ0 the intercept, and ˇi the main regression
oefficients.

In Table 6, a D-optimal design is shown that allows examining
 factors in 10 experiments [17].

.1.6. Supersaturated designs as screening designs
Supersaturated designs are discussed here, not because they

re recently developed designs, but because their application as
creening design in pharmaceutical analysis is not very common.
o examine a given number of factors, SS designs require less exper-
ments than the regular screening designs.

As already mentioned, usually two-level screening designs, such
s FF and PB designs, are applied for screening purposes. However,
n cases where many factors need to be examined, still their number
f experiments might be considered unfeasibly high. Or else, one
ants to perform an absolutely minimal number of experiments.
oreover, from all examined factors during screening, usually most

re found to be unimportant, while only a few have a significant
nfluence on the method response(s). This is called the ‘effect spar-
ity principle’ [18].

Generally, SS designs examine more than NSS − 1 factors (at
east NSS) in NSS experiments. As a consequence, in these designs,
he main effects are confounded and cannot be estimated uncon-
ounded anymore (see Section 3.1) [18–22]. There are various

ethods to construct two-level, multi-level or mixed-level SS
esigns [18].

Two-level SS designs examine minimally NSS factors at two  lev-
ls in NSS experiments. Two-level SS designs can be constructed
andomly [23]; systematically, i.e. using a specific optimality cri-
erion in order to approach orthogonality as much as possible
24–26]; or as half-fractions of Plackett–Burman designs [27]. The
atter method uses one column of a (N, f) PB design as branching
olumn to construct two supersaturated designs. All experiments
ith the branching column either at high or low level are selected

nd then the branching column is deleted, resulting in two super-
aturated designs with fSS = f − 1 factors and NSS = N/2 experiments
Table 7).

Other construction methods apply columnwise–pairwise algo-

ithms based on D-optimal design searches (Table 8) [28], are based
n evolutionary or genetic algorithms [29], on the Galois field
heory [30], on cyclic balanced incomplete block designs [31,32],
pply an optimal foldover plan [33], or use Bayesian D-optimality
9  1 1 1 −1 −1 −1 1 −1 1 −1
10 −1 1 1 1 −1 −1 −1 1 −1 1

[34]. In ref. [35], SS designs are constructed in such a way that
stepwise regression should be more effective in finding the active
factors. New design criteria are proposed, based on the adaptation
of Bayesian approaches [36], and applied to the context of optimal
design construction and method evaluation [35].

Multi-level SS designs examine in NSS experiments minimally
NSS factors at minimally three levels (L ≥ 3), and mixed-level SS
designs at minimally two  levels (L ≥ 2) but with different numbers
for some factors. Multi-level SS designs are constructed accord-
ing to the approaches described in refs. [37–41],  and mixed-level
according to those in refs. [42–45].

2.2. Response surface designs

The most important factors, either found from screening or
known from experience, are examined in more detail using
response surface designs. These in fact are used to determine the
optimal conditions for the factors. In these designs, only quantita-
tive and mixture-related factors are examined. The reason is that
the responses considered are modeled as a function of the factors.
These response surfaces are then visualized. Most often, only two
or three factors are further explored. There are several reasons for
that. Examining more factors usually requires a too high number of

experiments. Secondly, from three factors on, the entire response
surface cannot be visualized anymore, which makes it difficult to
determine the optimal conditions. For more than two factors, only
fractions of the entire response surface are visualized. For mixture-
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Table 8
NSS = 12 fSS = 16 supersaturated design, constructed according to Li and Wu [28].

Experiment Factors

A B C D E F G H I J K L M N O P

1 −1 −1 1 1 1 1 −1 −1 −1 1 1 −1 1 1 −1 1
2  −1 1 −1 1 1 1 −1 1 1 −1 −1 1 −1 1 1 1
3 1 −1  1 −1 1 −1 −1 1 1 −1 −1 −1 1 −1 1 1
4 −1  1 1 1 1 −1 1 1 −1 1 −1 1 1 −1 −1 −1
5 −1  1 1 −1 −1 1 −1 −1 1 1 1 1 1 −1 1 −1
6  1 1 −1 1 −1 −1 1 −1 1 −1 1 1 1 −1 −1 1
7  1 −1 1 1 −1 −1 −1 1 −1 −1 1 1 −1 1 1 −1
8  1 −1 1 −1 −1 1 1 −1 1 1 −1 1 −1 1 −1 1
9 −1  1 −1 −1 −1 −1 1 1 −1 1 1 −1 −1 1 1 1

10 1 −1  −1 1 1 1 1 1
11 1  1 −1 −1 1 1 1 −1
12  −1 −1 −1 −1 −1 −1 −1 −1

Table 9
Three-level full factorial design for 2 factors. Etc. refers to possible replicates of the
centre point.

Experiment Factors

A B

1 −1 −1
2  −1 1
3  −1 0
4  1 −1
5 1 1
6  1 0

r
f
c
t

2

T
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t
e

t
e
e
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7  0 −1
8  0 1
9,  etc. 0 0

elated factors, again all but one component can be selected as
actor. The response surface designs can be divided into symmetri-
al and asymmetrical designs, depending on their appropriateness
o be used in an asymmetrical domain [1,4–6,9].

.2.1. Symmetrical designs
Symmetrical designs cover a symmetrical experimental domain.

hey contain, for instance, three-level full factorial, central com-
osite, Box–Behnken, and Doehlert designs. Often in these designs
he centre point is replicated 3–5 times, usually to estimate the
xperimental error.

A three-level full factorial design contains all possible combina-

ions between the f factors and their L = 3 levels, leading to N = Lf = 3f

xperiments, including one centre point. Thus for two  factors, 9
xperiments are needed (Table 9), while for three factors, it are
lready 27 experiments (Fig. 2).

ig. 2. Three-level full factorial design to examine three factors in 27 experiments.
 1 1 1 −1 −1 −1 −1 −1
 −1 −1 −1 −1 1 1 1 −1
 −1 −1 −1 −1 −1 −1 −1 −1

A central composite design (CCD) contains a two-level full fac-
torial design (2f experiments), a star design (2f  experiments) and a
centre point, requiring N = 2f + 2f + 1 experiments to examine f fac-
tors [1,4–6,9]. Thus for two factors, 9 experiments are needed, while
for three factors, 15 are (Table 10 and Fig. 3) needed. The points of
the full factorial design are situated at the factor levels −1 and +1,
those of the star design at the factor levels 0, −  ̨ and +˛, and the
centre point at the factor levels 0. Depending on the  ̨ value, two
CCD’s exist, i.e. a face-centred CCD (FCCD) with |˛| = 1 examining
the factors at three levels, and a circumscribed CCD (CCCD) with
|˛| > 1 examining the factors at five levels. For a so-called rotatable

CCCD, the  ̨ level should be |˛| = (2f )
1/4

, i.e. 1.41 and 1.68 for 2 and
3 factors, respectively [1].

A Box–Behnken design contains N = (2f  (f − 1)) + 1 experiments,
of which one centre point [46]. For two  factors, no design is
described. For three factors, 13 experiments are described to be
performed (Table 11 and Fig. 4).

A Doehlert (uniform shell) design has equal distances between
all neighbouring experiments [47]. The Doehlert design for two fac-
tors consists of the six vertices of a hexagon with a centre point,
requiring N = 7 experiments. The design for three factors consists
of a centred dodecahedron, needing N = 13 experiments (Table 12
and Fig. 5). Contrary to the above response surface designs, the fac-
tors are varied at different numbers of levels, e.g. one at three and
one at five levels in the two-factor design, and one at three, one at
five, and one at seven levels in the three-factor design.
2.2.2. Asymmetrical designs
When an asymmetrical domain should be examined, asymmet-

rical designs, such as D-optimal designs or designs constructed

Table 10
Central composite design for 3 factors. Etc. see Table 9.

Experiment Factors

A B C

1 −1 −1 −1
2  1 −1 −1
3  −1 1 −1
4  1 1 −1
5  −1 −1 1
6  1 −1 1
7  −1 1 1
8 1  1 1
9  −  ̨ 0 0
10  +  ̨ 0 0
11  0 −  ̨ 0
12  0 +  ̨ 0
13 0  0 −˛
14  0 0 +˛
15, etc. 0 0 0
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Fig. 3. Circumscribed central composite design to examine three factors in 15 exper-
iments.

Table 11
Box–Behnken design for 3 factors. Etc. see Table 9.

Experiment Factors

A B C

1 1 1 0
2 1 −1  0
3  −1 1 0
4 −1  −1 0
5  1 0 1
6  1 0 −1
7  −1 0 1
8  −1 0 −1
9 0 1  1
10  0 1 −1
11  0 −1 1
12  0 −1 −1
13,  etc. 0 0 0

Fig. 4. Box–Behnken design to examine three factors in 13 experiments.

Table 12
Doehlert designs for 3 factors. Etc. see Table 9.

Experiment Factors

A B C

1 1 0 0
2  0.5 0.866 0
3 0.5  0.289 0.816
4 −1  0 0
5 −0.5  −0.866 0
6  −0.5 −0.289 −0.816
7  0.5 −0.866 0.000
8  0.5 −0.289 −0.816
9 0 0.577 −0.816
10 −0.5  0.866 0

11 −0.5  0.289 0.816
12  0 (0.577 0.816
13,  etc. 0 0 0

with the uniform mapping algorithm of Kennard and Stone, can
be applied [1,5,9,48,49]. These designs are called asymmetrical
because when plotting their experiments, they take an asymmet-
rical shape when an asymmetrical domain is examined. These
designs can also be used in a symmetrical domain, and then a
symmetric shape may  be obtained.

Asymmetric designs are used because symmetric designs in an
asymmetric domain are problematic. Either they are too large and
require experiments in an impossible area or they are too small and
then a considerable part of the domain is not covered (Fig. 6a and
b).

To construct a D-optimal design for f factors, the method
described above in Section 2.1.5 is used. In Fig. 6, this is repre-
sented for two  factors. From the candidate points forming a grid
over the asymmetrical domain (Fig. 6c), the N experiments forming
the D-optimal design are selected (Fig. 6d).

Most often, from a response surface design, the general model
build for f factors is as follows,

y = ˇ0 +
f∑

ˇixi +
f∑

ˇijxixj +
f∑

ˇiix
2
i (2)
i=1 1≤i<j i=1

where y is the response, ˇ0 the intercept, ˇi the main coefficients,
ˇij the two-factor interaction coefficients, and ˇii the quadratic

Fig. 5. Doehlert design to examine three factors in 13 experiments.
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components. For instance, suppose one is preparing a tablet and
wants to optimize the composition of three excipients. Most often
all three need to be present. Thus the vertices on the sides of the

Table 13
Mixture designs.

Experiment Factors Response

A B C

1 1 0 0 y1

2 0 1 0 y2

3 0 0 1 y3

4 0.5 0.5 0 y12

5 0.5 0 0.5 y13

6 0 0.5 0.5 y23

7 0.333 0.333 0.333 y123

8 0.670 0.165 0.165 y8

9 0.165 0.670 0.165 y9

10 0.165 0.165 0.670 y10
ig. 6. (a) A 32 full factorial design in a rectangular symmetrical domain, (b) a rest
rid  in the asymmetrical domain, and (d) the selected points constructing an 8-exp

oefficients. Occasionally, the interaction terms are restricted to
wo-factor interactions (xixj) and the higher-order interactions
eglected, as in Eq. (2).  Occasionally the non-significant terms of
he model are deleted after a statistical analysis.

The experiments selected using the Kennard and Stone algo-
ithm cover the experimental domain as uniformly as possible, and
re situated as far as possible from each other. This is obtained
y maximizing the minimal Euclidean distance of a new experi-
ent to those previously selected. The algorithm can be initiated

n two ways, i.e. either earlier performed experiments are included
Fig. 7a) or not (Fig. 7b). In this approach, the points are sequentially
elected, e.g. the 9-experiments design equals that with eight plus
he next selected experiment. In D-optimal designs, this is not the
ase. The designs with 8 and 9 experiments are different selections
rom the grid points.

.3. Mixture designs

Mixture designs are response surface designs studying only
ixture variables, and are applied to optimize the composition of
ixtures, such as of solvents, e.g. the mobile phase during optimiza-

ion of separation techniques, or of excipients in formulations (e.g.

ablets) in pharmaceutical manufacturing. Here all mixture com-
onents can be examined in one design. For instance, to examine

 three-components mixture, either a (3,1) simplex lattice mix-
ure design with 3 experiments (exp 1–3), a (3,2) simplex lattice
 32 full factorial design in an asymmetrical domain, (c) the candidate points of the
nts D-optimal design (possible or selected experiments (�)).

mixture design with 6 experiments (exp 1–6), a (3,3) simplex
lattice–centroid mixture design with 7 experiments (exp 1–7), or
an augmented simplex lattice–centroid mixture design with 10
experiments (exp 1–10) can be selected (Table 13 and Fig. 8).

For mixtures, very often limitations are defined for some of the
(3,1) simplex lattice design with 3 experiments (exp 1–3); (3,2) simplex lattice
design with 6 experiments (exp 1–6); (3,3) simplex lattice–centroid design with
7  experiments (exp 1–7); or augmented simplex lattice–centroid design with 10
experiments (exp 1–10).
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Fig. 7. Nine-experiments design: experiments selected by the uniform mapping
algorithm of Kennard and Stone: (a) with the requirement that a central point was
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Fig. 8. Mixture designs: three-component (3,1) simplex lattice design with 3 exper-

t = X ⇔ tcritical (7)
he  first selected, and (b) without requirements.

riangle do not result in a tablet. One has to limit to given regions
ithin the triangular domain of Fig. 8. Depending on the restric-

ions, the remaining domain is either another triangle (within the
arger one), or irregular. In the former case, the above mixture
esigns can be applied in the smaller triangle, and in the latter, the
arlier discussed asymmetrical designs (D-optimal, Kennard and
tone) can be constructed.

. Data interpretation

.1. Screening designs

From the results of a full factorial, FF or PB design,  the effect of
ach factor X on each response Y is estimated as follows
X =
∑

Y(+1) −
∑

Y(−1)
N/2

(3)
iments (exp 1–3); (3,2) simplex lattice design with 6 experiments (exp 1–6); (3,3)
simplex lattice–centroid design with 7 experiments (exp 1–7); or augmented sim-
plex lattice–centroid design with 10 experiments (exp 1–10).

∑
Y(+ 1) and

∑
Y(− 1) represent the sums of the responses where

factor X is at (+1) and (−1) level, respectively, and N the number of
design experiments [4,5].

An alternative is to estimate the coefficients of the regression
model [1,4–6],  given earlier in Eq. (1).  The latter approach is manda-
tory to analyze the results of a D-optimal screening design.

In general, a regression model estimates the relation between
the N × 1 response vector y, and the N × t model matrix X (Eq. (4)),
with N being the number of design experiments, and t the number
of terms included in the model. The model matrix X is obtained by
adding a column of ones before the t − 1 design matrix columns,
which consists of the coded factor levels (e.g. −1 and +1) and
the columns of contrast coefficients, as defined by the considered
experimental design.

y = (X�) + � (4)

� is the t × 1 vector of regression coefficients and � is an N × 1 error
vector. The regression coefficients b are usually calculated using
least squares regression,

b = (XTX)
−1

XTy (5)

where XT is the transposed matrix of X.
Because effects estimate the change in response when changing

the factor levels from −1 to +1, and coefficients that between levels
0 and +1, both are related as follows.

EX = 2bX (6)

Usually a graphical and/or statistical interpretation of the estimated
effects is done to determine their significance. Graphically, normal
probability or half-normal probability plots (Fig. 9) can be drawn
[4,5]. On these plots, the unimportant effects are found on a straight
line through zero, while the important deviate from this line.

The statistical interpretations usually calculate a t-test statistic
for the factors and compare either this t-value or the effect EX with a
limit value, tcritical, or a critical effect, Ecritical, respectively. All effects
that in absolute value are larger than or equal to this Ecritical are then
considered significant [4,5].∣∣E ∣∣
(SE)e

with (SE)e being the standard error of an effect. The critical t-value,
tcritical, depends on the number of degrees of freedom associated
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Fig. 9. Half-normal probability plot for 11 effects.

ith (SE)e and on the significance level, usually  ̨ = 0.05 (Eq. (7)).
he critical effect, Ecritical (Eq. (8)), is then obtained as follows.

critical = tcritical(SE)e ⇔
∣∣EX

∣∣ (8)

SE)e can be estimated from different data: from the variance of
eplicated experiments, from a priori declared negligible effects
Eq. (9)), and from a posteriori defined negligible effects (Eqs.
10–12)). We  consider the last two approaches as most appropriate
o properly estimate (SE)e. They are discussed below.

(SE)e can be derived from nN a priori declared negligible effects,
N, being either (two-factor) interaction or dummy  effects in FF and
B designs, respectively (Eq. (9)). It is recommended that at least
hree negligible effect estimates are available to properly estimate
he error.

SE)e =
√∑

E2
N

nN
(9)

SE)e can also be derived from a posteriori defined negligible effects
y using, for example, the algorithm of Dong [50]. Even for a mini-
al  screening design, this algorithm can be applied. An initial error

stimate based on the median of the absolute effects, s0 (Eq. (10)),
s then used to make a final error estimate, (SE)e (Eq. (11)), based
n the m effects Ek that are considered unimportant, i.e. for which
Ek

∣∣ ≤ 2.5s0.

0 = 1.5 × median
∣∣EX

∣∣ (10)

SE)e =
√∑

E2
k

m
(11)

he algorithm of Dong requires effect sparsity, i.e. �50% signifi-
ant effects. Problems of detecting the significant effects correctly
ccur in situations where the effect sparsity principle is violated
nd the number of significant effects approaches 50%. The algo-
ithm then overestimates (SE)e (Eqs. (10) and (11)) and thus also
critical (Eq. (8)), resulting in significant effects incorrectly consid-
red non-significant [51,52].

An alternative for these situations is to use an adaptation to
he algorithm of Dong as suggested in [52]. The adapted approach
ecommends applying the 75% lowest absolute effects,

∣∣E75%

∣∣ , for
he initial error estimation s0 (Eq. (12)).
0 = 1.5 × median
∣∣E75%

∣∣ (12)

o analyze SS screening design results,  many different interpreta-
ion approaches have been proposed [18]. However, because of
ical and Biomedical Analysis 56 (2011) 141– 158

the confounding of main effects, it is not evident to properly esti-
mate them. Cela et al. [53] proposed solving the results of SS
designs, constructed according to reference [29], applying genetic
algorithm-based regression (Supersat® software, freely download-
able at http://www.usc.es/gcqprega/).

Phan-Tan-Luu and co-workers [54] also described an
approach to indicate the most significant effects from SS design
results. The method is included in their Nemrod® software
(http://www.nemrodw.com/), and represented in Fig. 10.

In a first step, a coefficient is estimated for all factors of the
design matrix (NSS, fSS) using ridge regression (Fig. 10a). The second
step uses the first f1 factors with the largest absolute coefficients
(f1 < fSS and f1 ≈ 2fSS/3) to estimate a new coefficient for, using the
reduced matrix (NSS, f1) (Fig. 10b). Stepwise regression and all-
subset regression are used to indicate, from these f1 factors, the f2
most important with 1 ≤ f2 ≤ 6. The latter decision is based on the
determination coefficient, r2, and the residual variance, s2, of the
models. In a third step, a coefficient is estimated for all factors of
the matrix (NSS, f3), containing f3 = fSS − f1 + f2 factors (Fig. 10c). This
way, the factors that were discarded (fSS − f1) and those selected
(f2) are re-evaluated. This allows reconfirming the f2 important fac-
tors and to ensure that no important factors have been incorrectly
excluded. Then, from these f3 factors, again a number of factors
(1 ≤ f4 ≤ 6) is retained using stepwise regression and all-subset
regression, for which the decision is again based on the determi-
nation coefficient, r2, and the residual variance, s2, of the models.
In a final step, the initial design is projected into a smaller non-
saturated design, only containing the f4 active factors (Fig. 10d).
Then classic tools of regression analysis can be used to estimate
the coefficients of these most active factors.

Our group developed a method, called the Fixing Effects and
Adding Rows (FEAR) method, to estimate all factor effects from
supersaturated design results [21,22]. The supersaturated designs
studied so far are the half-fractions of PB designs. The key ideas
in this approach are that SS designs possess too few experiments,
i.e. equations, for an accurate estimation of all factor coefficients,
and that effect sparsity occurs. The FEAR method is represented in
Fig. 11.

In a preliminary step (step 0), the factor effects are estimated
in the classic way using Eq. (1) (Fig. 11a). These estimates are
inaccurate, because main effects are confounded. They will be
reconsidered later in the procedure. In a first step (step 1), a num-
ber of zero effect rows, i.e. situations where the coefficient of a
given factor arbitrarily is defined to be zero, is added to the model
matrix (Fig. 11b). From this combined matrix, the coefficients are
estimated using least squares. This is repeated for a large number
of different combinations of added zero effect rows, i.e. either the
fSS !/((fSS + 1 − NSS) ! (NSS − 1) !) possible combinations or a max-
imum defined number, e.g. 20,000, for computational reasons.
From the distributions of the estimated least squares regression
coefficients (effects) for the different factors, the most important
factor is defined, its coefficient estimated and fixed (Fig. 11b). In
the histogram, one observes also the situations where the coef-
ficient (effect) had been fixed at zero. These should be ignored
in the estimation of the coefficient/effect. This is called one FEAR
step, which is then repeated, but with the largest coefficient fixed.
Using a sequential approach, the FEAR method thus estimates con-
secutively the largest coefficients and removes their confounding
from the other estimated factor coefficients (Fig. 11c). Finally, after
adding all rows with fixed effects, the factor coefficients are cal-
culated from the complete matrix using least squares (Fig. 11d). In
each step, the factor effects are estimated from the factor coeffi-

cients (Eq. (6)) and their significance is then determined using the
algorithm of Dong [50] at significance level  ̨ = 0.05.

However, fixing too many factor coefficients usually results
in an overcorrection. Thus one should stop when all important

http://www.usc.es/gcqprega/
http://www.nemrodw.com/
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Fig. 10. Phan-Tan-Luu and Sergent’s approach to estimate the most significant factors in supersaturated designs. (a) Step 1: (a.1) the NSS × (fSS + 1) supersaturated model
matrix  X (dotted box), and its ridge regression coefficients. (a.2) Selection of the f1 ≈ 2fSS/3 factors with the largest absolute coefficients. (b) Step 2: the NSS × (f1 + 1) reduced
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atrix  X1 (dotted box), its stepwise and all-subset regression coefficients, and select
tep  3: the NSS × (f3 + 1) reduced matrix X2 (dotted box) with f3 = fSS − f1 + f2, its step
actors based on the r2 and s2 values of the models. (d) Step 4: the NSS × (f4 + 1) redu

ffects are fixed. Therefore, to select this step with the ‘best esti-
ated’ effects, the critical effects from Dong’s approach or from the

dapted Dong’s approach are plotted as a function of the FEAR steps.
 large decrease in the critical effect or the beginning of a series of
ritical effects that do not decrease largely anymore indicates the
tep to be chosen (Fig. 11e). It indicates the step where important
ffects were estimated, fixed, and removed from the matrix. At that
tep, the factor effects seem to be estimated best.

.2. Response surface designs

With the experimental results of a response surface design, a
olynomial model, describing the relation between a response and

he considered factors, is build. Usually a second-order polynomial

odel (Eq. (2))  is constructed.
Afterwards, the model can be interpreted graphically and/or

tatistically. Graphically, the model is visualized by drawing 2D
 the 1 ≤ f2 ≤ 6 most important factors based on the r and s values of the models. (c)
nd all-subset regression coefficients, and selection of the 1 ≤ f4 ≤ 6 most important
atrix X3 (dotted box), and its classically estimated regression coefficients.

contour plots or 3D response surface plots. A 2D contour plot
(Fig. 12a) shows the isoresponse lines as a function of the levels
of two  factors, while a 3D response surface plot (Fig. 12b) repre-
sents the response in a third dimension. From such plots, often the
best or optimal conditions are derived. However, one should be
aware that, in case three or more factors are considered, a plot as
in Fig. 12 only represents a part (occasionally a very small) of the
entire response surface in the examined domain.

The fit of the model to the data can be evaluated statistically
applying either Analysis of Variance (ANOVA), a residual analysis,
or an external validation using a test set [1,4–6].  One also can deter-
mine the significance of the b coefficients in the above model and
then eliminate the non-significant ones, for instance, sequentially.

Because most often, in practice, the optimum is not one point but
a region with acceptable performance, the quadratic model with-
out statistical analysis performs acceptably well. The model is used
to find the proper conditions and not for predictive purposes as
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Fig. 11. The FEAR method to estimate factor effects in supersaturated designs. (a) Step 0: the NSS × (fSS + 1) supersaturated model matrix X (dotted box), and its classically
estimated factor effects, (b) step 1: (b.1) the NSS × (fSS + 1) model matrix with fSS + 1 − NSS added rows. In each added row, one effect is randomly defined as zero. Regression
coefficients for the combinations with det(ZTZ) /=  0 are calculated. Here the dotted box represents Z. (b.2) Some histograms of estimated coefficients used to derive the
most  important factor, and the (NSS + 1) × (fSS + 1) matrix with a fixed largest coefficient, (c) steps 2 till (fSS + 1 − NSS): add fSS – NSS more rows of zero effects in step 2 and fix
the  largest coefficient again as in step 1. Then iteratively apply the procedure (each time with one row less of zero effects added) till all (fSS + 1 − NSS) added rows contain a
fixed  estimated coefficient, (d) step (fSS + 2 − NSS): estimate the least squares regression coefficients from the (fSS + 1) × (fSS + 1) matrix, (e) critical effects as a function of the
different steps. Graphic approaches to indicate at which step of the iterative process the best effect estimates are obtained.
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Fig. 12. (a) 2D contour plot, and (b) 3D response surface plot.

ultivariate calibration models are. Therefore less effort can be
pent in finding the best model and the quadratic one usually fits
he data acceptably good.

.3. Mixture designs

As already mentioned, to examine three components of a mix-
ure, either a mixture design with three, six, seven or 10 points can
e used (see Table 13 and Fig. 8). A three-experiments (3,1) simplex

attice design (Table 13,  exp 1–3) is used to estimate the coefficients
f the model.

 = b1x1 + b2x2 + b3x3 (13)

A six-experiments (3,2) simplex lattice design (Table 13,  exp
–6) is used to estimate the coefficients of the model.

 = b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 (14)

A seven-experiments (3,3) simplex lattice–centroid mixture
esign (Table 13,  exp 1–7) is used to estimate the coefficients of
he following reduced cubic model

 = b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 + b123x1x2x3

(15
In Eqs. (13)–(15), y is the modeled response, x1, x2, and x3 are
he fractions of the first, second, and third mixture component,
espectively, and bi, bij and bijk are the model coefficients. The
ical and Biomedical Analysis 56 (2011) 141– 158 153

above situations require no regression and the model coefficients
can simply be estimated from one or some measured results (Eqs.
(16)–(22)).

b1 = y1 (16)

b2 = y2 (17)

b3 = y3 (18)

b12 = 4y12 − 2(y1 + y2) (19)

b13 = 4y13 − 2(y1 + y3) (20)

b23 = 4y23 − 2(y2 + y3) (21)

b123 = 27y123 − 12(y12 + y13 + y23) + 3(y1 + y2 + y3) (22)

It can be demonstrated that the model of Eq. (15) is a rep-
resentation of the above mentioned cubic model (Eq. (2)), but
only applicable for mixtures. When performing experiments 1–10
(Table 13), which constitutes another mixture design, then the coef-
ficients of Eq. (15) need to be estimated applying a regression. The
model of Eq. (15)) can also be used to draw 2D contour plots or 3D
response surface plots for the triangular domain of Fig. 8 or for parts
of this domain in case one works in a restricted domain within the
triangle.

4. Analytical applications

4.1. Some classic applications

In the context of optimizing and validating separation meth-
ods, the application of screening and response surface designs has
already been discussed and reviewed frequently [5,7,11,55,56].
For screening, two-level full factorial [57–60],  fractional factorial
[61–66], Plackett–Burman [67–72],  and three-level [73–75] screen-
ing designs were mainly applied. For the actual optimization of
important factors, response surface designs, such as three-level full
factorial [76,77], central composite [62,66,78–80], Box–Behnken
[81], Doehlert [67,68,82],  D-optimal designs [69,83,84],  or designs
constructed using the uniform mapping algorithm of Kennard and
Stone [85,86],  were used.

Applications of designs were reviewed in the context of method
optimization (both screening and optimization) [5] and robustness
testing [5,7] of CE methods. For robustness testing of HPLC, CE, GC,
supercritical fluid chromatography (SFC), ultra-performance liquid
chromatography (UPLC) methods, experimental design approaches
were discussed in ref. [11]. Applications of response surface designs
to optimize analytical methods, e.g. HPLC, CE, GC, atomic absorption
spectrophotometric (AAS), atomic emission spectrophotometric
(AES), amperometric, voltammetric, spectroscopic, and capillary
chromatographic methods, are described in ref. [55].

The use of Doehlert designs was reviewed in ref. [56]. Opti-
mized methods were AAS, AES, voltammetric, polarographic, SFC,
GC, capillary chromatographic, and HPLC ones. Reference [87]
describes some practical problems that can occur during method
optimization of chromatographic methods in pharmaceutical
analysis.

In ref. [88], the HPLC assay of the active ingredients of St. John’s
Wort, described in a monograph [89], was  optimized. An asym-
metrical mixed-level 23 31 41 screening design was constructed
according to Addelman [14] and it examined in 16 experiments the
effects of three factors at two  levels, one at three levels, and one
at four levels on the hypericin concentration. Based on the results,
it was decided to adapt the monograph method. Therefore, an 18-

factors 20-experiments two-level PB design was  used to evaluate
the new sample pretreatment of this assay.

In the context of optimizing formulations, products, or pro-
cesses, two-level screening designs, such as full factorial [90],
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Fig. 13. Composite simplex centroid (10 experiments)–simplex centroid (7 experiments mixture design for the simultaneous optimization of the extraction solution and the
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Impurities in drugs should be identified, qualified, and/or quan-
tified, depending whether or not certain threshold (concentration)
limits are exceeded [111]. Therefore, pharmaceutical companies
obile phase composition, respectively.
eproduced with permission from [102].

ractional factorial [91,92],  and Plackett–Burman [93–95] designs
ere applied. Response surface designs, such as three-level full fac-

orial [96–98],  central composite [93,94], Box–Behnken [91], and
oehlert [99,100] designs, were also used to optimize the most

mportant factors.
Mixture designs were applied to optimize the mobile phase

omposition [101–103] in chromatographic techniques, the extrac-
ion solution [102,103],  as well as formulations, products, or
rocesses [104–106]. In ref. [104], a micro-emulsion formulation
as optimized, in ref. [105], the size of amphiphilic cyclodextrin
anoparticles, and in ref. [106] a pharmaceutical gel formulation. A
3,3) simplex lattice–centroid design with seven experiments (1–7
n Table 13)  was applied in ref. [104], and an augmented simplex
attice–centroid design with 9 experiments (1–9 in Table 13)  in ref.
101]. In ref. [105], a D-optimal approach was used to select 12
xperiments in a triangular domain. In ref. [106], also a D-optimal
pproach selected 18 experiments in a tetrahedron-shaped domain
ith constraints for the factors.

In ref. [102], a composite simplex centroid–simplex centroid
ixture design (Fig. 13)  is applied for the simultaneous optimiza-

ion of the extraction solution and the mobile phase composition,
espectively. The first design has 10 experiments (1–10 in Table 13)
nd was used to optimize the extraction solution. This design was
erformed at each experiment of the second design, which has
even experiments (1–7 in Table 13)  and was used for the opti-
ization of the mobile phase composition. This leads to 70 different

ombinations, which does not seem very economical. However, it
an also be represented as analyzing 10 samples at the 7 mobile
hases of the 7-point design.

In ref. [103], a crossed mixture design and a simplex centroid
Fig. 14)  were used to respectively optimize the mobile phase
omposition and the extraction solution simultaneously. The first
esign has 9 experiments in an asymmetric part of the triangle
nd was used to optimize the mobile phase composition. At each
f these experiments, the second design was performed. The sec-
nd design has 10 experiments (1–10 in Table 13)  and was  used to
ptimize the extraction solution. This leads to 90 different combi-
ations, for which a similar comment as above can be made.

A rather new application of classic experimental designs is seen
n PAT-related research. Full factorial designs for three (23) [107]
nd four factors (24) [108–110] were applied to examine the in-line

onitoring and understanding of the homogenization process of a

harmaceutical suspension [108], of a freeze-drying process [109],
f a powder-blending process [107], and of a fluid-bed granulation
rocess [110].
4.2. Advanced analytical applications

4.2.1. Method development for drug impurity profiling (or
mixtures of (drug) substances in general)

As already mentioned, to optimize separations in chro-
matography, electrophoresis, or electrochromatography, often the
screening is not needed because the importance of the factors
on the selectivity is known. For instance, in reversed-phase high-
performance liquid chromatography (RPLC), the stationary phase,
mobile phase pH, organic modifier composition, gradient slope,
and column temperature are, in decreasing order, important for
the selectivity. These most important factors then are optimized
using a sequential approach, in which experimental designs also
can be included to optimize a couple of factors simultaneously. Such
approach can, for example, be applied to develop drug impurity
profiles.
Fig. 14. Crossed mixture design (9 experiments) and a simplex centroid (10 exper-
iments) for the optimization of the mobile phase composition and the extraction
solution, respectively.
Reproduced with permission from [103].
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evelop a drug impurity profile, i.e. ‘a description of the identified
nd unidentified impurities present in a new drug substance’  [111].

Often, chromatographic impurity profiles are developed using
PLC, and should allow detecting and separating all (un)identified

mpurities in each new drug. In ref. [112], various HPLC mass spec-
rometry (HPLC–MS) methods were screened in order to obtain a
eneric impurity profiling approach. Finally, four methods, using
ifferent stationary and mobile phases, and gradient elution pro-
edures, were selected as orthogonal or dissimilar systems.

In refs. [113–115], a sequential approach is defined to develop a
hromatographic drug impurity profile. The factors are optimized
n the sequence of importance on the selectivity. The steps distin-
uished are (1) selection of dissimilar columns, i.e. with different
electivities, (2) selection of a suitable column and optimization of
he mobile phase pH, (3) optimization of the organic modifier com-
osition, and (4) optimization of the gradient slope and the column
emperature [113,114].

The drug impurities mixture is screened on the selected columns
t different mobile phase pH values and/or different organic
odifier compositions [113,114].  These latter parameters can

e optimized sequentially or simultaneously. In the sequential
pproach, the pH is optimized first, resulting in the selection of the
ost suitable column and pH [113,114].  Then the organic mod-

fier composition is optimized on the above column and at the
elected pH, for instance, in a mixture design-based approach [115].
inally, occasionally as fine-tuning of the method, parameters with
ess influence on the selectivity, such as the gradient slope profile
nd the temperature, can be optimized, for instance, in a response
urface design-based approach [115].

In chromatography, it is not suitable to model selectivity fac-
ors or resolutions, i.e. parameters describing the separation, as a
unction of the examined factor(s). For each impurity a model is
uild, relating its retention to the evaluated parameters. This allows
redicting the retention of each impurity at intermediate param-
ter values. Then, for each composition, the predicted retentions
nd corresponding peak widths (considered constant in gradient
lution and modeled for isocratic elution) are sorted, enabling the
alculation of the separation responses. The optimal conditions are
hose where the separation responses are highest, i.e. where the
orst separated peak pair is separated best [114,115].

Impurity profiles can also be developed using electrophoretic
r electrochromatographic methods. Electrophoretic profiles were
eveloped using capillary zone electrophoresis (CZE) [116] and
on-aqueous capillary electrophoresis (NACE) [117], both cou-
led to electrospray ionization mass spectrometry (ESI–MS).
hree CZE–ESI–MS methods and one NACE–ESI–MS method were
elected as being orthogonal. Electrochromatographic impurity
rofiles were developed using open-tubular capillary electrochro-
atography (OTCEC) coupled to ESI–MS, and two methods were

hosen as orthogonal [117]. The orthogonality or dissimilarity of
our HPLC–MS [112], three CZE–ESI–MS [116], one NACE–ESI–MS
117], and two OTCEC–ESI–MS [117] methods was evaluated, in
rder to define a generic approach for impurity profiling.

.2.2. Supersaturated designs as screening designs
To our knowledge, only a few research groups examined the

se of supersaturated designs in analytical chemistry, i.e. these
f Cela, Phan-Tan-Luu/Sergent, and our own. Analytical appli-
ations considered are screening for contaminants in composite
amples [118–123], screening for important factors in the context
f optimizing formulations [124] or processes [54], and method
ptimization or robustness testing of pharmaceutical assays [125].
The group of Cela has several publications applying supersatu-
ated designs [118–123]. The designs were used in the development
f a new procedure for sample composition determination, called
he strategic sample composition (SSC), which is to be applied in
ical and Biomedical Analysis 56 (2011) 141– 158 155

environmental or food safety screening campaigns. To test for con-
taminants, usually, conventional composite samples, obtained by
mixing several individual samples, are analyzed. If such composite
sample is found to be ‘positive’, all original samples in the com-
posite must be analyzed individually to identify only those that
are really above the threshold limit of the considered contaminant,
in order to locate the source of contamination. In SSC, a SS design
is used to define the composition of a set of samples. The rows
represent the composite samples constitution, and the columns
the original samples. The (−1) and (+1) levels in the two-level SS
designs indicate the absence or presence of the original sample,
respectively. First, the conventional composition sample with all
original samples present (all at (+1) level) is analyzed. When a ‘neg-
ative’ result is obtained, the evaluation is ended. On the other hand,
when obtaining a ‘positive’ result, the composite samples, defined
by the SS design, are analyzed. Then the obtained data are pro-
cessed using genetic algorithm-based regression [53] to indicate
those original samples that are above the threshold limit and to esti-
mate the analyte concentrations in these samples. SSC was already
applied to the screening of trace metals [118], polycyclic aromatic
hydrocarbons (PCB’s) [119], anti-inflammatory drug residues [120],
pesticides [121], and polychlorinated biphenyls [122] in water sam-
ples, and of PCB’s in milk samples [123].

The group of Phan-Tan-Luu and Sergent also presented some
analytical applications [54,124]. To optimize a wet  granulation pro-
cess, a supersaturated design (NSS = 16, fSS = 30) was constructed as
a half-fraction of a 32-experiments PB design. The design was used
to screen 28 factors potentially influencing the results of the gran-
ulation process [124]. The method described higher in Section 3.1
(Fig. 10)  was  applied to analyze the results, and six factors were
found important.

In ref. [54], a supersaturated design (NSS = 18, fSS = 31) was con-
structed as a half-fraction of a 36-experiments PB design, and
used to screen factors influencing the preparation of sulfated
amides from olive pomace oil fatty acids. The conversion from olive
pomace oil fatty acids to sulfated amides involves the following
process steps: saponification, hydrolysis, esterification, amidation,
and sulfation. These sulfated amides are then applied as lime soap
dispersant. Six factors were found to influence the reaction yield
most, and three intermediately, after applying the above discussed
data analysis (Section 3.1).

Our group performed several robustness tests on an optimized
Flow Injection Analysis method to assay L–N-monomethylarginine.
Several designs, containing different numbers of experiments, were
compared [125]. Both PB (N = 8, f = 7 or N = 12, f = 11) and SS (NSS = 6,
fSS = 10, constructed as a half-fraction of a 12-experiments PB
design) designs were examined. It was  evaluated whether reducing
the number of experiments from 12 to 8 or 6, leads to similar fac-
tor effect and critical effect estimates, and whether the same effects
are considered (non-)significant. To estimate the factor effects from
the SS designs, the FEAR method, described above in Section 3.1
(Fig. 11), was  used.

Generally, the estimated (critical) effects were similar for
all designs, although those from the SS designs tended to be
somewhat overestimated. From all designs, the method was con-
sidered robust, since no significant effects were found for the
response describing the quantitative aspect of the method. For
other responses, such as peak height and residence time, significant
effects occurred. For these responses, the most important factors
were indicated as significant from all applied designs.

5. Conclusions
This review gave an overview of both classic and advanced
experimental design set-ups and their data interpretation. Rather
uncommon experimental set-ups, such as D-optimal designs or
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upersaturated designs as screening designs, were considered. The
dvanced or adapted data interpretations where we  focused on
ere the adapted algorithm of Dong and the estimation of factor

ffects from supersaturated design results. As analytical applica-
ions, first a short overview is given of applications with classic
xperimental designs. This is followed by a discussion on the devel-
pment of drug impurity profiles, and one about applications using
upersaturated designs as screening designs.
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